Differential signal transduction of progesterone and medroxyprogesterone acetate in human endothelial cells.
نویسندگان
چکیده
The conjugated equine estrogens-only arm of the Women's Health Initiative trial, showing a trend toward protection from heart disease as opposed to women receiving also medroxyprogesterone acetate (MPA), strengthens the debate on the cardiovascular effects of progestins. We compared the effects of progesterone (P) or MPA on the synthesis of nitric oxide and on the expression of leukocyte adhesion molecules, characterizing the signaling events recruited by these compounds. Although P significantly increases nitric oxide synthesis via transcriptional and nontranscriptional mechanisms, MPA is devoid of such effects. Moreover, when used together with physiological estradiol (E2) concentrations, P potentiates E2 effects, whereas MPA impairs E2 signaling. These findings are observed both in isolated human endothelial cells as well as in vivo, in ovariectomized rat aortas. A marked difference in the recruitment of MAPK and phosphatidylinositol-3 kinase explains the divergent effects of the two gestagens. In addition, both P and MPA decrease the adhesiveness of endothelial cells for leukocytes when given alone or with estrogen. MPA is more potent than P in inhibiting the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. However, when administered together with physiological amounts of glucocorticoids, MPA (which also binds glucocorticoid receptor) markedly interferes with the hydrocortisone-dependent stabilization of the transcription factor nuclear factor kappaB and with the expression of adhesion molecules, acting as a partial glucocorticoid receptor antagonist. Our findings show significant differences in the signal transduction pathways recruited by P and MPA in endothelial cells, which may have relevant clinical implications.
منابع مشابه
Ligand- and cell-specific effects of signal transduction pathway inhibitors on progestin-induced vascular endothelial growth factor levels in human breast cancer cells.
We evaluated the signaling pathways involved in regulating vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, in response to natural and synthetic progestins in breast cancer cells. Inhibition of the phosphoinositide-3'-kinase (PI3-kinase) signaling pathway or the specificity protein-1 (SP-1) transcription factor abolished both progesterone- and medroxyprogesterone ac...
متن کاملProgestogens reduce thromboxane production by cultured human endothelial cells.
OBJECTIVES Progestogens have been poorly studied concerning their roles in endothelial physiology. Prostanoids are vasoactive compounds, such as thromboxane A2, a potent vasoconstrictor, and prostacyclin, a vasodilator. We examined the effects of two progestogens used clinically, progesterone and medroxyprogesterone acetate, on thromboxane A2 production by cultured human umbilical vein endothel...
متن کاملCertain progestins prevent the enhancing effect of 17beta-estradiol on NO-mediated inhibition of platelet aggregation by endothelial cells.
OBJECTIVE Estro-progestin treatments have been associated with an increased risk of thromboembolic events in postmenopausal women. This study examined whether progestins affect the stimulatory effect of estrogens on the endothelial formation of nitric oxide (NO), a potent antithrombotic factor. METHODS AND RESULTS Experiments were performed with human endothelial cells. Endothelial NO synthas...
متن کاملCertain Progestins Prevent the Enhancing Effect of 17 -Estradiol on NO-Mediated Inhibition of Platelet Aggregation by Endothelial Cells
Objectives—Estro-progestin treatments have been associated with an increased risk of thromboembolic events in postmenopausal women. This study examined whether progestins affect the stimulatory effect of estrogens on the endothelial formation of nitric oxide (NO), a potent antithrombotic factor. Methods and Results—Experiments were performed with human endothelial cells. Endothelial NO synthase...
متن کاملProgestogens stimulate prostacyclin production by human endothelial cells.
BACKGROUND The effects of progestogens on endothelial physiology are poorly studied. Prostacyclin is a potent vasodilator synthesized by two isoforms of cyclooxygenase (COX) in endothelium. We examined the effects of two clinically used progestogens, progesterone and medroxyprogesterone acetate (MPA), on prostacyclin production by cultured human umbilical vein endothelial cells (HUVEC) and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 145 12 شماره
صفحات -
تاریخ انتشار 2004